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Bamboo is a rapidly renewable material that is available globally and comparable in strength to modern structural 

materials. The widespread use of bamboo in construction is limited by the inherent variability in its geometric and 

mechanical properties, and the lack of standardisation. Engineered bamboo aims to reduce the variability of the 

natural material and is processed and manufactured into laminated composites. Although the composites have 

mechanical properties similar to other structural materials, the products are currently limited to architectural 

applications. A field of research on engineering bamboo is emerging with the aim to demonstrate and expand its use  

to structural applications. To summarise the state of the art, a review of published research is presented with the 

focus on two types of engineered bamboo: bamboo scrimber and laminated bamboo. The materials are compared  

with structural timber and laminated veneer lumber to demonstrate the potential applications and practical use. 
 

Notation 
r density of material 

sc compressive stress parallel to grain 

st tensile stress parallel to grain 

t shear stress parallel to grain 

 

 

 
1. Introduction 

Interest in bamboo for construction continues to grow as focus 

shifts towards reducing the environmental impact and embo- 

died energy of the built environment. Bamboo in its natural 

form is a cylindrical pole, or culm, and is part of the grass 

family. There are over 1200 species of bamboo worldwide, with 

structural species varying by location. The different species can 

be generalised into three types of root systems, sympodial 

(clumping), monopodial (running) bamboo, as shown in 

Figure 1, and amphipodial (clumping  and  running). 

 
Bamboo is a rhizome in which shoots grow from the root base. 

In sympodial bamboo, the bamboo culms grow in close 

proximity to each other to form a clump, whereas monopodial 

bamboo appears to consist of individual culms, although each 

culm is part of an extensive root system in which individual 

shoots grow and the roots continue to extend if not controlled. 

Amphipodial bamboo is a mixture of the two root bases. The 

composition of the bamboo culm includes longitudinal fibres, 

aligned in the vertical direction of the bamboo, within a lignin 

matrix.  At  locations  along the  culm,  called nodes, there   are 

fibres in the transverse direction. As a functionally graded 

material, the fibre distribution increases from the inner culm 

wall, with the greatest density found on the external culm wall 

(Figure 2). The material growth is rapid, growing to full height 

of up to 30 m within a year (Liese and Weiner, 1996), after 

which the culm continues to gain strength, reaching  the 

optimal structural properties within 3–5 years, depending on 

the species. Proper management of the plant is required to 

maintain the production of the culms, as the culms that are not 

harvested will start to decay and will collapse in approximately 

10 years. 

 
The rapid growth and renewability of bamboo are ideal 

characteristics for use in construction; however, the material is 

used only marginally. The following review explores the 

development of engineered bamboo and aims to provide 

background on the use of bamboo in structural applications 

and emerging research on the development of engineered 

bamboo products. Although this is a nascent field of research, 

the following state-of-the-art review identifies areas for further 

development that will provide a basis to advance this novel 

material. Through review of published studies, we will identify 

key areas where further research is needed to determine fully the 

potential applications for engineered bamboo  products. 

 
2. Bamboo in construction 

Full culm bamboo construction is not extensively practised 

around the world, with primary uses of traditional    bamboo 
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Figure 1. Bamboo plant, types and parts 

 

construction found in Asia, Latin America and East Africa. In 

Colombia, Trujillo et al. (2013) noted five types of bamboo 

structures: traditional construction, social housing, luxury 

housing, long-span buildings and footbridges. Additionally, 

vehicle bridges have been constructed in Colombia (Stamm, 

2002) and in China (Xiao et al., 2010). In Ethiopia, the 

structural use of bamboo is part of traditional construction 

methods and is used in the form of full culm and split bamboo 

with other materials (Kibwage et al., 2011). Other traditional 

structural uses of full culm bamboo include scaffolding in 

India,   China   and   Hong   Kong   (Chung   and   Yu,     2002; 

 

 

 

Figure 2. Bamboo culm and wall thickness 

Muthukaruppan, 2008; Yu et al., 2003; 2005). Although 

examples of bamboo construction continue to increase, the 

extensive use of bamboo in the design and engineering of 

conventional structures is limited by several factors. First, the 

natural material itself varies in geometry and material proper- 

ties, between species and within a species, and within a single 

culm. Additionally, the material is round or elliptical in form, 

which makes joints and connections difficult. Finally, design 

and testing standards exist for full culm bamboo (ISO, 2004a, 

2004b, 2004c), but the standards themselves do not fully 

provide the foundation from which builders, engineers and 

architects can design with  bamboo  (Harries  et  al.,  2013). 

To overcome these limitations, development of engineered 

bamboo products is increasingly explored for construction 

purposes. 

 
The advantage of engineered bamboo products is the ability to 

create standard sections for members and connections, and to 

reduce the variability within a single member. Bamboo in its 

natural form is a light material that is comparable in strength   

to steel in tension and concrete in compression, yet acceptance 

is limited by the variance in cross-section and mechanical 

properties. Although past studies have explored the design of 

bamboo composites in relationship to efficiency (e.g. Beukers 

and  Bergsma,  2004),  the  research  focused  on  the  use      of 

   extracted   short   fibres   rather   than   laminated   sections   of 
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bamboo. Growing interest in the design of engineered bamboo 

products is driven by the fact that the manufacturing process 

eliminates the round cross-section by creating bundles or 

strips, which maintain the longitudinal fibres in a section that 

can be laminated together to form a standard shape and size 

used in construction (Paudel, 2008). The process allows 

production of standard sections with more uniform   properties. 

 
3. Bamboo manufacturing 

The production of bamboo products in China utilises  the 

whole culm, with different sections used for various manu- 

facturing processes. The use of the entire culm is highly 

efficient, but within the individual manufacturing processes, 

the material use efficiency decreases, although waste material is 

often used for energy (van der Lugt, 2008). Of particular 

interest is the use of bamboo culms for boards, which can be 

easily compressed or laminated to form larger sections. The 

process of manufacturing bamboo boards in China began in  

the 1970s and has increased in production through industria- 

lisation of the manufacturing process (Ganapathy et al., 1999). 

China leads in production and export of bamboo-based 

products; export is mainly to Western countries and Japan 

(Lobovikov et al., 2007). The Chinese processes for manufac- 

turing two bamboo-based products, bamboo scrimber and 

laminated bamboo, are shown in Figure   3. 

 
Bamboo scrimber, also known as strand-woven or parallel- 

strand bamboo, is manufactured from crushed sections of the 

bamboo culm, which are coated in a resin, compressed and 

then heated to cure the resin (Figure 3(a)). The term scrimber 

originates from a  timber-based  product  that  was  developed 

in Australia to utilise small-diameter material that maintained 

the longitudinal direction of the fibres (Bowden, 2007). In 

contrast, laminated bamboo is manufactured with strips of 

bamboo that are processed to form rectangular sections, which 

are then laminated to form a board (Figure 3(b)). Comparison 

of the material input and output in the production of a product 

can be described as the production efficiency. In timber, van 

der Lugt (2008) estimates the efficiency of sawn timber as 

approximately 30–40% of the original volume of logs, with the 

remaining material accounted for in losses due to processing. 

For bamboo, the production efficiency varies by manufacturer 

and is approximately 80% for bamboo scrimber and 30% for 

laminated bamboo (van der Lugt, 2008). In comparison the 

material efficiency of glulam production in the USA is 

approximately 82% (Puettmann and Wilson, 2006). Figure 3 

details the manufacturing process and illustrates the difference 

between the two products, with bamboo scrimber, primarily 

used in external applications, utilising the entire culm, whereas 

the laminated bamboo, used in indoor flooring and surface 

applications, is based on multiple levels of selection to create 

the  final product. 

3.1 Bamboo products 

Laminated bamboo and bamboo scrimber are typically formed 

into boards for flooring and surface applications. Table 1 

compares the mechanical properties of natural and commer- 

cially produced bamboo, as well as structural and laminated 

timber products. The table is a compilation of experimental 

studies and aims to show the potential of engineered bamboo 

as a structural material; the table summarises commercially 

produced bamboo board products and their basic material 

properties. The mechanical properties in tension and compres- 

sion for both board products are comparable to other  

structural materials,  yet the products  themselves are limited   

to architectural applications. The properties in bending of the 

single-ply laminated boards have a modulus of rupture (MOR) 

and flexural modulus of elasticity (MOE) that are comparable 

to  the  flexural properties  of  other structural materials. 

 
3.2 Comparison to timber 

Wood is an orthotropic material with varying mechanical 

properties along the longitudinal, radial and tangential axes, 

with strength and stiffness different in each direction. Also an 

orthotropic material, bamboo has varying strength and stiffness 

in the longitudinal, radial and tangential directions. Bamboo’s 

strength is found in the longitudinal direction through fibres 

within a lignin matrix, which makes it strong in tension and 

compression but weaker transverse to the fibre direction. Table 1 

also includes mechanical properties for two types of wood 

products, timber and laminated veneer lumber (LVL), tested by 

different standards. Lavers (2002) reports mechanical properties 

for small clear specimens of Sitka spruce tested to ASTM D143: 

Standard test methods for small clear specimens of timber 

(ASTM, 2009) and BS 373 Methods of testing small clear 

specimens of timber (BSI, 1957). Kretschmann et al. (1993) tested 

LVL made with Douglas fir using ASTM D4761: Standard test 

methods for mechanical properties of lumber and wood-base 

structural material (ASTM, 2013), to obtain the bending and 

tension strength. As shown in Table 1, the mechanical properties 

of Sitka spruce are less than the bamboo in compression and 

shear, but comparable in tension and bending. Bamboo is 

comparable in bending, but stronger in compression and tension 

parallel to grain. Research indicates that bamboo scrimber and 

laminated bamboo are comparable to structural timber and LVL 

in bending and stiffness, but significantly stronger in tension and 

compression. While the comparison to timber appears to be 

straightforward, the use of bamboo board products for 

structural applications requires additional investigation to 

understand the basic mechanical properties of the material and 

the best way in which to utilise those properties. 

 
4. Recent studies on engineered bamboo 

products 

The following review explores published studies on bamboo 

scrimber and laminated bamboo. The authors acknowledge  the 
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for (a) bamboo scrimber and (b) laminated bamboo in China. 
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Compression stress: MPa Tension stress: MPa 

 
Shear stress: 

MPa Flexural 
 

 
Density: 

kg/m3
 

Parallel 

to grain 

Perpendicular 

to grain 

 
Parallel 

to grain 

Perpendicular 

to grain 

 
Parallel to 

grain 

 
MOR: 

MPa 

MOE: 

GPa 

Bamboo scrimbera
 801 – – 

 
41 7 

 
– 

 
102 2 

Laminated bamboob,c
 577–750 63–64 20  102–191 3–4  4  78–88 1–12 

Phyllostachys pubescensd
 666 53 –  153 –  16  135 – 

Sitka sprucee
 383 36 –  – –  9  67 8 

Douglas fir LVLf
 520 – –  49 –  –  68 13 

 
 

aPlyboo (2013a). 
bLamboo (2013). 
cPlyboo (2013b). 
dGhavami and Marinho (2001). 
eLavers (2002). 
fKretschmann et al. (1993). 

 
Table 1. Material properties for natural bamboo, commercially 

produced bamboo and timber products 

 
 

review is not all encompassing and have selected publications 

that focus on investigation of the material and mechanical 

properties rather than applications. A summary of the studies 

and selected data is presented in Table   2. 

 
4.1 Test standards 

The studies utilised test standards from around the world to 

obtain mechanical properties, although all used an equivalent 

timber standard. The bamboo scrimber studies focused on the 

material properties for boards, with standards from Japan, 

China and the USA used to characterise the material (Table 2). 

Pereira and Faria (2009) investigated glue laminated bamboo 

made from Dendrocalamus giganteus, a species commonly found 

in Brazil, using Brazilian standards for wood. An increasing 

number of recent publications utilise ASTM (2009) D143: 

Standard test methods for small clear specimens of timber 

(Correal et al., 2010; Mahdavi et al., 2012; Sinha et al., 2014; 

Xiao et al., 2013). Testing and development of engineered 

bamboo through timber standards will aid in the development 

and application of this novel material. Through creation of 

analogous testing and design methods, engineered bamboo has 

the potential to be a competitive alternative to  timber. 

 
4.2 Manufacturing method 

Mahdavi et al. (2011) reviewed different methods used to 

manufacture different types of bamboo products: scrimber, 

laminated and rolled bamboo. The studies presented in Table 2 

varied in the method used to obtain the base bamboo material 

for the laminates from culms split in half and flattened by a 

plate (Lee et al., 1998), roller flattening (Nugroho and Ando, 

2000; 2001), hammer (Mahdavi et al., 2012) to splitting of 

bamboo into strips which are then planed to size (see Figure 4). 

Comparison of the low-technology approach (manual methods 

with minimal mechanical processing) and the high-technology 

approach (substantial processing and use of heat for lamina- 

tion) are of particular interest. Studies have shown increased 

mechanical processing requires additional energy inputs (Xiao 

et al., 2013) and losses in material as illustrated in the 

comparison of bamboo scrimber and laminated bamboo in 

Figure 3. 

 
Mahdavi et al. (2012) studied a low-cost method for laminated 

bamboo using Phyllostachys pubescens Mazel ex J. Houz. The 

laminates were manufactured with culms that were split in half 

and then hammered to replicate production of strips, which 

were still integral to the culm. The method is similar to bamboo 

scrimber manufacturing in which the culm is split and crushed 

maintaining the fibre direction (Huang et al., 2013; Zhou and 

Bian, 2014). High-technology processes include splitting and 

planing the bamboo into thin strips of bamboo that are glued 

then heated and pressed to form the laminate. An example of 

such processing is the trademarked material called GluBam, 

which is used in the construction of bridges and housing in 

China (Xiao and Yang, 2012). Xiao et al. (2013) outlined the 

process for creating GluBam, in which the beams are created 

from bamboo sheets, which are composed of thin strips of 

Phyllostachys pubescens that are pressed together. The process 

creates a high-strength composite that reduces the influence  

of the fibre gradation, which can affect the mechanical 

performance. 



 

 

 

 

 
 

 
 

 

Study Species Test standard Adhesive 

 

 
Laminate 

method 

 

 
Glue rate: 

g/m2
 

 

 
Initial 

MC: % r: kg/m3
 

Parallel to grain: 

MPa 
 

sc st t 

 

 
MOR: 

MPa 

 

 
MOE: 

GPa 
 

 

Bamboo scrimber 

Nugroho and Ando 

(2000) 

 

P. pubescens 

Mazel 

 

– Iso  Hydraulic hot 

press 

 

– 8–12 600–900 – – – 54–79 6–7 

Nugroho and Ando 

(2001) 

P. pubescens 

Mazel 

JIS A-5908, JIS 

Z-2113 

R Cold pressed 300 – 870–1010 – – – 67–81 10–12 

Guan et al. (2012)   M. baccifera GB/T 17657- 

1999 

PF Hot pressed – 9–12 1240 – – – 266 15 

P. pubescens 1090 203 11 

Huang et al. (2013)  – – – – – – – 62 138 – – – 

Zhou and Bian 

(2014) 

Laminated bamboo 

– ASTM D198-02  – Hot pressed – 12 – – – – 89 13 

Lee et al. (1998) P. pubescens ASTM D5456- 

94, D198-94 

R Hydraulic press 220–420 10–15 620–660 – – – 71–86 8 

Bansal and Prasad 

(2004) 

B. bambos BIS 1708-1986 UF, MUF, PF Hydraulic hot 

press 

Brush 8–10 728–796 – – – 123–145 12–17 

Correal and Lopez 

(2008) 

G. angustifolia 

Kunth 

ICONTEC 775, 

784, 785, 663 

PVA  Hydraulic cold 

press 

– 6–8 – 36 – 9 82 – 

Correal et al. 

(2010) 

G.angustifolia 

Kunth 

ASTM D143-94 PRF, MUF, 

PRF-MUF 

Hot press 260–450 – 730 60 95 9 111 – 

Sulastiningsih and 

Nurwati (2009) 

G. apus 

G. robusta 

ASTM D1037- 

93, JS-2003 

TRF  Cold pressed 

and clamped 

170 12 710–750 49–56 – – 39–95 7–10 

Pereira and Faria 

(2009) 

D. giganteus NBR 7190-97 PVA – – – – 66 144 – 99 14 

Mahdavi et al. 

(2012) 

P. pubescens 

Mazel ex J. 

Houz 

ASTM D143 PRF  Mechanical 

press 

– 16 510 – – – 77 9 

Sinha et al. (2014)   –  ASTM D198, 

D905, D143 

PRF Clamped – – – 9–10 – 16 42–70 22–23 

Xiao et al. (2013) P. pubescens ASTM D143-94  PF Hydraulic hot 

press 

– 15 800–980 51 82 7 99 9 

Adhesives: R, resorcinol; Iso, isocyanate; PF, phenol formaldehyde; UF, urea formaldehyde; MUF, melamine urea formaldehyde; PRF, phenol resorcinol formaldehyde; 
TRF, tannin resorcinol formaldehyde; PVA, polyvinyl acetate. 

Table 2. Summary of published studies on bamboo scrimber and 

laminated bamboo 
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Figure 4. Methods for obtaining base material for laminated 

bamboo 

 
 

 
Scrimber is manufactured by compression of the fibre bundles 

into a beam section. Although the fibre direction is maintained, 

the gradation is not maintained with the bundles crushed to 

form the section. In contrast, initial processing for laminated 

bamboo (Figure 3) removes the lowest density interior and 

highest density exterior, however, a slight fibre gradation is 

visually apparent in the strip. To explore the influence of the 

density of the fibres within a composite, Nugroho and Ando 

(2001) created laminated bamboo from crushed mats of P. 

pubescens Mazel. The mats were created using split culms that 

were flattened to maintain the fibre direction. The  crushed 

mats were planed to remove the inner and outer surfaces as in 

the processing of laminated bamboo strips (see Figure 3). The 

authors then varied the orientation of the inner and outer 

surfaces of the crushed bamboo within the laminate. The study 

indicated there was no significant difference in the orientation 

of the inner and outer   fibres. 

 
Bidirectional composites orient fibres in the selected direction 

to optimise the strength properties of the materials. Bansal and 

Zoolagud (2002) reviewed the process of manufacturing 

bamboo mat board (BMB) in India utilising woven mats, 

dipped in phenolic formaldehyde resin, which are then pressed 

together in various plies to form boards. The mats are formed 

with split bamboo with the epidermal layer (assumed to be the 

inner layer) removed and then woven at a 45˚angle. Xiao et al. 

(2013) also utilised a bidirectional composite by organising 

bamboo into longitudinal and transverse plies in GluBam.  

Xiao et al. noted a 4:1 ratio of longitudinal to transverse   plies, 

with a comparable MOE and MOR to  other  laminated 

bamboo studies. In comparison to a unidirectional bamboo 

laminate, the added stiffness of the bidirectional composite is 

advantageous for some applications. Nugroho and  Ando 

(2001) also noted that the orientation of the glue line 

influenced the mechanical properties, with the vertical glue 

line achieving higher values in both the MOE and    MOR. 

4.3 Adhesives 

Adhesives have an essential role in composites and must 

provide proper penetration and interface bond between the 

fibres and laminas. In the USA, structural wood adhesives are 

categorised for exterior, limited exterior and interior applica- 

tions (Frihart and Hunt, 2010). Commercial manufacturing of 

bamboo scrimber primarily uses phenol formaldehyde owing 

to its durability for exterior applications, and its low cost. 

Commercial laminated bamboo is produced for interior uses 

and utilises isocyanate for lamination. Bio-based resins, such as 

soy-based resins (Plyboo, 2013c), are also of interest owing to 

the formaldehyde-free formulation, although the additional 

costs have limited their use commercially. 

 
Table 2 lists the types of adhesives used in the studies, which 

are also used in wood composites. In the reviewed studies, a 

variety of wood structural exterior adhesives were utilised, 

including: resorcinol formaldehyde, isocyanate, phenol resor- 

cinol formaldehyde, tannin resorcinol formaldehyde and  

phenol formaldehyde (Frihart and Hunt, 2010). The only 

classified wood limited exterior adhesive explored in the 

bamboo studies was melamine urea formaldehyde, although 

polyurethane is also of interest because most formulations are 

formaldehyde-free. Urea formaldehyde, a wood structural 

interior adhesive, was studied as well as polyvinyl acetate, 

which is considered to be a non-structural wood interior 

adhesive (Frihart and Hunt,   2010). 

 
Bansal and Prasad (2004) tested laminated bamboo made from 

Bambusa bambos. The research explored three types of resins: 

urea formaldehyde, melamine urea formaldehyde and phenol 

formaldehyde. Phenol formaldehyde and phenol resorcinol 

formaldehyde provide higher strengths in comparison to the 

other adhesives (Bansal and Prasad, 2004; Correal et al., 2010). 

Current industrial practice utilises phenol formaldehyde for 

manufacturing of bamboo scrimber and laminates, although 

soy-based and formaldehyde-free adhesives are also used 

(Plyboo, 2013c). Formaldehyde-free adhesives are of interest 

owing to the associated human health impacts. Frihart and Hunt 

(2010) note that phenol, resorcinol and phenol resorcinol 

formaldehydes do not release detectable amounts of formalde- 

hyde after production; however, the levels of free formaldehyde 

in products is controlled by acceptable limits globally. The use of 

formaldehyde-based resins in some bamboo products continues 

to be the current industry practice and cost-effective choice (Xiao 

et al., 2013). Further study is needed to determine an adhesive 

that performs well both structurally and environmentally. 

 
To achieve a good bond, the moisture content of the material is 

essential. For interior applications of wood products in the 

USA, the average moisture content varies regionally between 6 

and 11% (Frihart and Hunt, 2010). Owing to the hydrophilic 

nature of the fibre, bamboo laminates are difficult to   maintain 
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at low moisture content and oven drying the specimens is the 

preferred method before lamination. As noted in Table 2, the 

studies varied in initial and test moisture content from 8 to 

16%. Lee et al. (1998) explored the impact of the initial 

moisture content on the strength of bamboo and found little to 

no effect on the mechanical properties; however, the moisture 

content affected the dimensional stability. Lee et al. (1998) also 

found the glue spread rate impacted both mechanical and 

physical properties. 

 
The glue spread rate is often specified by the manufacturer and 

several studies have explored varying the rate and the effect on 

strength. Correal et al. (2010) explored the glue spread rate on 

glue laminated Guadua (GLG). The results indicated that there 

was little difference between the types of adhesives and the mid- 

level spread rate was ideal, approximately 300 g/m2 for the wide 

face and 150 g/m2 for the narrow faces. The studies presented in 

Table 2 varied in the method of lamination (clamps or press), 

temperature (cold or heated), pressure and time. The different 

species of bamboo and methods of manufacturing led to a range 

of product densities, with the bamboo scrimber ranging from 

600 to 1240 kg/m3 and the laminated bamboo ranging from 510 

to 980 kg/m3 (Table 2). 

 
4.4 Mechanical properties 

As noted above, there is significant variation in the method of 

production for bamboo scrimber and laminated bamboo; 

however, the mechanical properties between the studies are not 

orders of magnitude different from each other. Although the 

material   properties   are   similar,   standardised   test methods 

 

 
Figure 5. Test methods to obtain mechanical properties in small 

clear specimens parallel to grain: (a) compression; (b) shear; 

(c) tension; and (d) bending 

would allow for better comparison between studies. Figure 5 

illustrates the general experimental set-up for the mechanical 

tests parallel to grain based on small clear specimens from BS 

373 and ASTM D143. 

 
Huang et al. (2013) was the only study on bamboo scrimber that 

reported the compressive (sc 5 62 MPa) and tensile stress (st 5 

138 MPa) parallel to grain. The tensile strength is similar to full 

culm bamboo (see Table 1), which is attributed to the main- 

tenance of the longitudinal direction of the fibre. For laminated 

bamboo, the tension and compression properties are noted to be 

similar to the bamboo scrimber (sc 5 36–66 MPa,  st  5 82– 

144 MPa). The properties for both products are similar to the 

properties of Sitka spruce and LVL in compression, but exceed 

the properties of LVL in tension (see Table 1). In shear parallel to 

grain, the laminated bamboo compares well to the bamboo board 

and timber products with a reported range of shear stress between 

9 and 16 MPa from the studies. The shear strength of bamboo 

scrimber was not reported in the reviewed studies. 

 
The bending MOR and MOE varied significantly in the studies 

for both the bamboo scrimber and laminated bamboo. In  

comparison to the Sitka spruce and LVL (Table 1), both  the 

bamboo scrimber (MOR 5 54–266 MPa) and the  laminated 

bamboo (MOR 5 39–145 MPa) provided a greater flexural 

strength, which is attributed to the natural flexibility and high 

tensile strength of the bamboo. The modulus of elasticity for 

both the bamboo scrimber (MOE 5 6–15 GPa) and laminated 

bamboo (MOE 5 7–14 GPa), was within range of the Sitka 

spruce and LVL (MOE 5 8–13 GPa, Table 1). 

 
The reviewed studies demonstrate that bamboo products are 

comparable to and in some cases outperform timber and glue 

laminated timber in terms of mechanical properties. While the 

studies show the potential of engineered bamboo, further 

research is needed to fully characterise and standardise 

products to develop viable alternatives to timber    products. 

 
5. Engineering selection: strength, 

efficiency, cost and environmental 

performance 

The traditional method of selecting engineering materials is no 

longer solely based on strength, efficiency and cost, but is now 

supplemented by another criterion: environmental performance. 

With interest in reducing their environmental impact, structural 

materials are scrutinised in terms of source, manufacturing, 

construction, operation, maintenance and disposal. Additional 

consideration must be given to the performance of the material, 

not only in terms of structural capacity, but also in terms of the 

environment. Bamboo in its natural form is a highly efficient 

material. With these additional parameters under consideration, 

   bamboo quickly becomes a potential material for structural use. 

(a) (b) (c) 

(d) 
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The life-cycle analysis of structural bamboo is increasingly 

explored with studies focusing on the environmental impacts 

associated with full culm construction (Yu et al., 2011). Zea 

Escamilla and Habert (2014) explored the environmental 

impact of different bamboo-based products. The study showed 

that engineered bamboo (glue laminated bamboo) has a higher 

environmental impact than lower industrialised products, 

which is attributed to the higher level of processing and 

contributions from other inputs into the products. The authors 

also noted the differences in contribution of the electricity mix 

to the environmental impacts, with China twice the environ- 

mental impact from electricity in comparison with Brazil and 

Colombia (Zea Escamilla and Habert, 2014). An additional 

area of interest is the type of resin utilised in the manufacturing 

process. Life-cycle inventories on wood resins are available 

(Puettmann and Wilson, 2006; Wilson, 2010); however, these 

studies focus on production in specific locations (USA) and, as 

with the electricity mix, the variability of production is 

increased when the analysis is shifted to other parts of the 

world and uncertainty in the analysis is   increased. 

 
While research on various  bamboo-based  products continues 

to grow and expand to investigate the life-cycle analysis and 

the associated environmental costs (van der Lugt et al., 2006; 

2009; Vogtlander et al., 2010), the cradle-to-cradle analysis of 

engineered bamboo is limited. For example, Xiao et al. (2013) 

investigated GluBam and analysed the environmental perfor- 

mance of the manufacturing process in comparison to other 

traditional construction materials, such as timber, plywood, 

cement, aluminium and steel. The analysis of the manufactur- 

ing method provides a glimpse of the embodied energy and 

associated impacts, although an expanded scope to include the 

additional inputs is necessary to fully understand the environ- 

mental impacts and costs associated with engineered bamboo 

products. 

 
6. Practical relevance and potential 

applications 

Engineered bamboo has the potential to be a competitive 

product in the marketplace. Bamboo has several advantages 

over other materials and offers not only strength but aesthetic 

value too. The use of bamboo in construction is still an 

emerging field, as is the use of engineered bamboo products. 

These products have mechanical properties that are compar- 

able to or exceed those of structural timber and laminated 

veneer lumber, yet they are used inefficiently in solely 

architectural and surface applications. Several factors need to 

be addressed for engineered bamboo products to be used in 

construction. Engineering quantification of mechanical proper- 

ties will determine the potential structural applications. While 

the presented review of recent studies on engineered bamboo 

demonstrates the increasing interest, there is also a need for 

further testing based on standardised methods, such as existing 

timber testing methods. With a consensus on the test methods 

utilised to characterise bamboo materials, a knowledge base will 

be formed to develop structural products, as well as the 

codification necessary to utilise these materials in the main- 

stream market. In addition to the technical aspects of engineered 

bamboo, the environmental impacts associated with the 

production of the products need to be explored. Research on 

the various inputs and processes used to develop these novel 

products will provide a foundation on which to increase 

efficiency and reduce the associated impacts. With increased 

research and development engineered bamboo can serve as a 

competitive and sustainable alternative to conventional struc- 

tural materials. 
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